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input data for the following types of traffic data, grouped into four
categories:

• Traffic volume (base-year information)
– Two-way annual average daily truck traffic (AADTT)
– Percentage of trucks in design direction
– Percentage of trucks in design lane
– Vehicle (truck) operating speed

• Traffic-volume adjustment factors
– Monthly adjustment
– Vehicle-class distribution
– Hourly truck distribution
– Traffic growth factors

• Axle load distribution factors
– Axle load distribution of each axle type (single, tandem,

tridem, and quad) for each month and truck class
• General traffic inputs

To address the need for traffic data inputs for the MEPDG, NCHRP
Project 1-39, Traffic Data Collection, Analysis, and Forecasting
for Mechanistic Pavement Design, was conducted, and it included
development of guidelines for forecasting traffic data to formulate
load spectra. The guidelines included a proposed simple forecasting
procedure: associate a project site with one or more sites that have
known historical traffic data; analyze the data from these sites; and
then, applying appropriate judgment, adjust the results based on a
review of macroeconomic and site-specific factors. However, the proj-
ect developed neither the procedure nor the criteria for associating a
project site with others.

CalME is the software and accompanying documentation for the
analysis and design of flexible pavements developed for Caltrans
and specifically tailored to the materials, traffic, and climate conditions
in California.

The CalME software also requires detailed truck traffic information,
but the requirements are less demanding than those of MEPDG.
CalME needs two types of truck traffic information: traffic volume
and axle load spectra. Traffic volume includes three variables: number
of axles per truck, number of axles per year per design lane, and growth
rate of traffic volume. For the axle load spectra, the CalME models
consider four axle groups: steering, single, tandem, and tridem. The
average hourly load spectra of each axle group are needed for the entire
year, in contrast to the monthly load spectra required by MEPDG.
Analysis of historical Caltrans weigh-in-motion (WIM) data showed
little seasonal variation in the state (1).

The CalME program for design of flexible pavements has three
levels of analysis: an empirical method based on R-values and
gravel factors, a classic ME approach based on equivalent single-
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This study developed default truck traffic inputs for mechanistic–
empirical pavement design procedures for the California highway system
based on California weigh-in-motion (WIM) data. Both cluster analysis
and regression analysis were applied to develop the default axle load
spectra. Regression analysis produced unsatisfactory results so it was
not used. On the basis of cluster analysis of axle load spectra, the WIM
sites were divided into several groups, and default truck traffic inputs
were estimated for each group. A decision tree was developed to help
designers select the appropriate default factors based on easily available
information: geographic location and traffic volume and composition.
These data can be obtained from the California Department of Trans-
portation annual report of annual average daily truck traffic. Traffic
inputs were developed for both the Caltrans Mechanistic–Empirical
Pavement Design and NCHRP Mechanistic–Empirical Pavement Design
Guide software.

The University of California Pavement Research Center and the
California Department of Transportation (Caltrans) have been
working together since 2000 to enable Caltrans to use mechanistic–
empirical (ME) design procedures for pavement rehabilitation and
reconstruction and new pavement designs. The work includes eval-
uation and calibration of the Mechanistic–Empirical Pavement Design
Guide (MEPDG) software developed as part of the NCHRP 1-37A
project and development of pavement analysis and design models for
flexible pavement that are incorporated into the Caltrans Mechanistic–
Empirical Pavement Design (CalME) software. Both software pro-
grams require more detailed data on truck traffic for pavement
performance analysis than the older pavement design procedures
used by Caltrans.

Truck traffic, a key input for the design and analysis of pavement
structures, is the most important factor in pavement damage and
deterioration. The mechanistic-based distress prediction models
used in the MEPDG software require the input of specific data for
each axle type and axle load group. MEPDG takes three levels of
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axle load (ESAL) values, and an incremental-recursive method. The
incremental-recursive method requires inputs of axle load spectra,
whereas the first two levels require only the traditional Caltrans traffic
index (ESALs in the design period).

Caltrans has been installing WIM stations and collecting truck
traffic data on state highways in California since 1987. It has main-
tained a very detailed database of historical truck traffic information
for more than 80 highway sites across the state. WIM data include
axle load, axle spacing, and vehicle speed information for each truck,
from which the complete traffic inputs for the ME design software
can be derived. This information, however, is limited to the highway
sections where WIM stations are installed. For many other highway
sections where no, or limited, truck traffic data are collected, the
traffic inputs for the ME design software must be estimated from
other available sources.

OBJECTIVE

This paper analyzes the axle load spectra and truck traffic-volume data
included in the California WIM database and develops the default
truck traffic inputs for CalME and MEPDG for pavement sections
where site-specific WIM traffic data are unavailable or incomplete.

METHODOLOGY AND DATA SOURCE

Extrapolation of truck traffic characteristics to other locations was
explored in previous studies (2–4). The conventional approach is to
categorize highway sections into groups and use traffic data from
other sections within the same group. The determination of groups,
however, is difficult because traffic streams on highways typically
consist of vehicles with diverse origin–destination (O-D) areas and
are affected by many factors in these O-D areas such as demographic
and economic traits. Pioneering work on grouping conducted in
the state of Washington found that it is not possible to form homo-
genous groups (5). The work of this study builds on that of previous
investigations but focuses on the California highway network. Two
approaches were explored to categorize traffic: regression analysis
and cluster analysis.

Regression Analysis

Recently, regression analysis has been applied to examine the char-
acteristics of axle load spectra among sites (2). Such a statistical model
has the potential for quantitative prediction of traffic data for ME
analysis and design. For functional responses (e.g., load spectrum), the
analysis is performed in two steps: first, the load spectrum is fitted with
some theoretical distribution functions, so that it is reduced to a few
characteristic parameters; second, with the estimated parameters used
as response variables, regression analysis is performed to determine
the influence of other explanatory variables on these parameters.

Axle load spectra tend to appear with multiple concentrations of
central tendency. For example, tandem axle load spectra typically
have two peaks (bimodal distribution), representing empty and loaded
trucks. Multimodal distribution of axle load can be modeled by the sum
of several theoretical distributions. Mathematically, it can be expressed
as follows:

f p fi i
i

* ( )= ∑ 1
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where

f* = axle load spectrum,
fi = theoretical distribution of axle load,
pi = scaling factor that gives weight to fi in the sum, and
i = 1, 2, or larger integers.

Several theoretical distributions can be used in the formula, such
as the normal distribution, the lognormal distribution, the beta dis-
tribution, and the gamma distribution. The fit between the sum of
several theoretical distributions and observed load spectra has been
shown to be excellent (6).

In this study, a gamma distribution and a normal distribution are
combined to model the axle load spectra:

where

= probability density function of a gamma distri-
bution,

= probability density function of a normal distri-
bution,

k, θ, σ, and µ = parameters,
p = scaling factor between 0 and 1,
x = axle load within a given axle load type, and

f(x) = relative frequency of axle load x for each axle
load type: for example, steering single, single,
tandem, and tridem.

The four parameters and the scaling factor are estimated by min-
imizing the sum-of-the-squared errors between the actual and fitted
load spectra coefficient (LSC). LSC, a statistical measure related to
the concept of pavement damage, is defined as follows:

where

l = number of load ranges,
mid-load_rangei = average load for load range i,

load-range_counti = number of axles in load range i,
L = 1 for steering axle and single axle, 2 for

tandem, and 3 for tridem, and
m = exponent (3.8).

The five estimated parameters (four distribution parameters and the
scaling factor) are then used as the response variables in a multiple
linear regression analysis to explore the relationship between these
parameters and potential predictors, including highway characteristics
and socioeconomic factors.

Cluster Analysis

Given the large number of WIM sites available, a hierarchical clus-
ter analysis can be applied to group the multivariate response into
informative clusters. This method makes no assumptions about the
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grouping criteria or influential factors. The highway characteristics
within each cluster are then examined to extract the common traits.
One advantage of cluster analysis is that it preserves the shape
information of the multivariate response. The basic operations of the
hierarchical clustering algorithm can be found in the literature (7 ).

Data Source

The WIM data collected during the period 1991–2003 from all 108
WIM stations installed before 2003 were obtained from the Caltrans
Office of Truck Services and used in the analysis. The distribution
of these WIM stations can be found in the literature (7 ).

RESULTS

Regression Analysis for Axle Load Spectra

The two-step regression analysis procedure was followed to inves-
tigate the relationship between explanatory variables and axle load
spectra. The explanatory variables include a variety of factors that can
affect the truck traffic flow on highways. In this study, two categories
of factors are considered:

• Roadway characteristics
– Number of lanes
– Highway functional classification
– Truck traffic volume and volume ratio of Class 5 and Class 9

trucks
– Area types: urban and rural

• Socioeconomic factors
– Population density and change in population density
– Housing density and change in housing density
– Land use
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Highway functional classification consists of three levels: Inter-
state, U.S., and state highways. The Class 9 truck traffic volume in
2000 is used to represent the main truck flow at each WIM location.
Area types have two levels: urban and rural. Changes in population
and housing densities are the differences in the data between 1990 and
2000. Land use has two levels: agriculture–forest and other uses. Land
use is considered because agricultural and logging activities typi-
cally generate truck traffic. All data for these explanatory variables
were extracted from the California Spatial Information Library.

In addition to the two categories of factors, grouping based on
the axle load spectra was incorporated into the regression analysis.
A categorical variable, representing the three groups determined by
preliminary cluster analysis of the tandem axle load spectra, was
included as an explanatory variable (7 ).

Pearson’s correlation matrix of these explanatory variables revealed
that the number of lanes and area types, population density and
housing density, and population density change and housing density
change are highly correlated, so area type, housing density, and
housing density change were removed from the analysis. In addition,
the population density change over 10 years was normalized to the
population density in the year 2000, so essentially a population
density growth rate was used as an explanatory variable. Table 1
summarizes the estimation results for the five parameters. For the
scaling factor (p), the multiple linear regression model fitted the
data well. The scaling factor determines the relative heights of 
the two peaks in tandem axle load spectra: a larger scaling factor
indicates a higher percentage of low-weight axles. The signs of
the estimated coefficients for the explanatory variables suggest that
a high volume of Class 9 trucks corresponds to a low percentage
of low-weight axle loads, and highways in rural and inland areas
have fewer low-weight axle loads.

The other four parameters determine the width and shape of the
first peak (gamma function) curve and the width and position of the
second peak (normal function) curve. The R2-value is small for all

TABLE 1 Estimation Results from Regression Analysis of Tandem Axle Load Spectra

p k Θ µ σ

Parameter Estimate P-Value Estimate P-Value Estimate P-Value Estimate P-Value Estimate P-Value

(Intercept) 0.8054 <.001 1.6115 <.001 4.6530 .0009 0.8145 .0048 15.892 <.001

Ratio of Class 5 and Class 9 trucks 0.0085 .4274 0.0331 .6212 −0.0650 .8332 0.1829 .0062 −0.2213 .1088

Class 9 volume −0.0018 .0213 −0.0054 .2547 0.0180 .4084 0.0055 .2278 −0.0285 .0042

Number of lanes 0.0056 .4839 0.0132 .7914 −0.0824 .7200 0.0404 .4026 −0.0997 .3281

U.S. highway or Interstate highway 0.0043 .7736 −0.0283 .7645 0.2620 .5490 0.0622 .4977 −0.0770 .6901

State highway or Interstate highway 0.0013 .9028 0.0841 .2227 −0.4507 .1579 0.0339 .6100 −0.0395 .7776

AADTT 2000 0.0000 .0164 0.0000 .7947 0.0000 .8596 0.0000 .6442 0.0001 .0775

Urban or rural 0.0081 .5553 0.0351 .6811 −0.3224 .4153 0.0300 .7172 −0.1727 .3242

PD2000a 0.0000 .0725 0.0001 .4885 0.0000 .9725 0.0001 .4831 −0.0002 .3505

NDPDb 0.0352 .3323 −0.0978 .6659 0.2357 .8216 −0.2411 .2739 0.0079 .9864

Land usec 0.0069 .5256 0.0618 .3651 −0.0930 .7671 −0.0246 .7086 0.0041 .9766

Cluster Group 3 or Cluster Group 1 −0.1043 <.001 0.0139 .8752 0.2664 .5140 −0.0491 .5658 0.3005 .0992

Cluster Group 2 or Cluster Group 1 −0.1418 <.001 0.0024 .9891 1.6364 .0433 −0.1958 .2434 0.6190 .0824

R2 .866 .287 .421 .311 .198

P-value for constantd <.001 .046 <.001 .025 .309

aPopulation density in 2000.
bPopulation density change from 1990 to 2000, normalized by PD2000.
cAgriculture–logging land-use reference to other land uses.
dP-value for the null hypothesis that the regression function is a constant term.



four parameters, indicating that the multiple linear regression model
does not fit the data well.

Overall, the regression analysis does not capture the spatial vari-
ation characteristics of the tandem axle load spectra. The same
conclusion was reached for the other axle groups.

Cluster Analysis of Axle Load Spectra

Both CalME and MEPDG require the load spectra of four axle groups,
with slight differences. CalME needs the load spectra of steering,
single, tandem, and tridem axles, whereas MEPDG requires the load
spectra of single, tandem, tridem, and quadruple axles. Quadruple
axles typically do not exist on California highways, so they are ignored
in the analysis.

Tandem Axle Loads

Among the four axle groups considered, the tandem-axle group is the
most important because it generally has the highest volume. Therefore,
cluster analysis is first performed on the tandem axle load spectra
to group the WIM sites. The grouping is then adjusted on the basis
of the cluster analysis on the load spectra of other load groups. On
the basis of the cluster analysis of the tandem axle load spectra, three
groups were obtained. The second group was further split into two
subgroups (Groups 2a and 2b) because of some significant variations
in the low-load range.

The axle load spectra in each group, averaged to give the group-
level default load spectra, are plotted in Figure 1. Trucks at WIM
sites in Group 1 have more light axles than heavy axles, and trucks
at other WIM sites have more heavy axles. Trucks at WIM sites in
Group 3 have the highest percentage of heavy axles. Trucks at WIM
sites in Groups 2a and 2b have similar percentages of heavy axles,
but trucks at Group 2b WIM sites have higher percentages of inter-
mediate load axles and lower percentages of light axles than trucks
at Group 2a WIM sites.

A check of locations of the WIM sites reveals that most WIM
sites in Group 1 are along the coast or near urban areas. These sites

Lu, Zhang, and Harvey 65

have more empty-truck axle loads and lighter loaded-truck axle loads.
The sites in Groups 2a, 2b, and 3 are in inland and rural or mountain
areas. These sites have more loaded-truck axle loads and heavier
axle loads associated with them.

Further examination of the highway information reveals that
truck traffic on I-5, US-99, and US-395 consists predominantly of
heavy, long-haul trucks.

On the basis of highways and regions, California highways can
be divided into the following four groups:

• All highways in the coastal regions and in urban areas are in
Group 1.

• I-5 in Districts 3 (Sacramento County), 10, and 6; US-99 in
Districts 3, 10, and 6; I-505; I-80 in Placer County (District 3);
Highway 46 in District 5; and I-580 in District 10 are in Group 2a.

• I-5 in Tehama County (District 2), Glenn, Colusa, and Yolo
Counties (District 3); Highway 58 in District 6; I-10 and I-15 in
District 8; and US-395 are in Group 2b.

• I-5 and US-97 in Siskiyou and Shasta Counties (District 2) and
Highway 58 and I-40 in District 8 are in Group 3.

Other highways in the inland and rural areas can be placed in
Group 2 if no additional information is available.

For a given highway section, use of these physical locations alone
to determine grouping may appear vague and sometimes erroneous.
A better approach is to assign groups based on known traffic infor-
mation. Fortunately, the Caltrans Traffic Data Branch compiles traffic
counts for the entire California highway network in annual AADTT
reports, which contain not only the annual average daily traffic
(AADT) and AADTT but also counts of trucks with two, three, four,
and five or more axles.

Four variables from the Caltrans annual AADTT report were
examined for their usefulness in helping to classify the highway
sections: AADT, AADTT, truck percentage, and (4–8)/(9–15) ratio.
The truck percentage is the percentage of AADTT in AADT, and the
(4–8)/(9–15) ratio corresponds to the ratio of Class 4 through Class 8
truck volume to Class 9 through Class 15 truck volume in the WIM
data and is calculated as the number of trucks with two, three, and
four axles divided by the number of trucks with five or more axles.
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Figure 2 shows the distributions of AADT, AADTT, truck percent-
age, and (4–8)/(9–15) ratio in each group. The following observations
can be made from these plots:

1. Highways with AADT of more than 70,000, or with less than
10% trucks, or with a (4–8)/(9–15) ratio greater than 1 (higher volume
of two-, three-, and four-axle trucks than of trucks with five or more
axles) are in Group 1.

2. The (4–8)/(9–15) ratio for highways in Groups 2a, 2b, and 3
is typically less than 0.5.

3. Highways in Group 3 have at least 25% trucks in the traffic
stream.

4. Traffic on highways in Group 1 has broad distributions in terms
of AADT, AADTT, truck percentage, and (4–8)/(9–15) ratio.

On the basis of the preceding observations, a decision tree can be
developed to determine to which group a highway section should
belong.

Steering Axle, Single Axle, and Tridem Axle Loads

Cluster analysis of the steering axle load spectra divides the WIM
sites into two major groups. Comparison of the groups based on
tandem-axle load and the groups based on steering-axle load reveals
that all the WIM sites in Group 1 of steering-axle load are part of the
WIM sites in Group 1 of tandem-axle load. These WIM sites are
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mainly on highways in densely populated areas, including the Bay
Area, Los Angeles, San Diego, and a few other California cities.

The WIM sites in Group 1 based on tandem axle load spectra can
be further divided into two subgroups (Groups 1a and 1b) based on
the steering axle load spectra. The relationship between the truck
percentage and the (4–8)/(9–15) ratio is used as the criterion for
division, as shown in Figure 3. WIM sites with a truck percentage
less than 10 and a (4–8)/(9–15) ratio greater than 1.2 are placed in
Group 1a; otherwise, they are placed in Group 1b.

Cluster analysis of the single axle load spectra also divides the WIM
sites into two major groups. The WIM sites in the first group are all
in Group 1 based on the tandem axle load, and most WIM sites in the
second group are in Group 2 or 3 based on the tandem-axle load.

Cluster analysis of the tridem axle load spectra divides the WIM
sites into two major groups. A location check reveals that the WIM
sites in the second group are mainly on I-5, US-97, and I-505.

Grouping of WIM Sites Based 
on Axle Load Spectra

Because regression analysis has produced poor results for fitting axle
load spectra, the rest of the study focuses on use of the grouping
technique to develop default truck traffic inputs.

Using the load spectra characteristics of steering axles and tridem
axles, the grouping based on the tandem axle load spectra was 
further divided into eight subgroups (Level 3 groups), as shown in
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Table 2. If only the tandem axle load spectrum is to be considered
for grouping, the WIM sites can be divided into Level 1 or 2 groups.

A decision tree was developed to help determine in which group
a highway section should be placed, as shown in Figure 4. The aver-
aged traffic inputs from all WIM sites in each group were used as
the traffic characteristics of the regions covered by the group. For
CalME, the number of axles per truck and the hourly axle load spec-
tra are averaged for each group. Other traffic inputs, including the
number of axles per lane per year and the growth rate of truck traf-
fic, should be developed for each highway section from the Caltrans
annual AADTT report.

The number of axles per lane per year can be calculated based on
the following equation:

where

NaxleLY = number of axles per lane per year,
AADTT = annual average daily truck traffic (two-way),

N f fd laxleLY AADTT Axle_per_Truck= i i i i 365 4( )
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Axle_per_Truck = number of axles per truck,
fd = directional distribution factor of truck traffic

(default value = 0.52), and
fl = lane distribution factor of truck traffic.

Analysis of Traffic Volume in Each Group

MEPDG requires more traffic inputs than CalME, particularly for
traffic volume, needing both base year information and adjustment
factors, as indicated in the introduction. Development of the default
values for each entry in the list is discussed here.

AADTT and Number of Lanes

Two-way AADTT can be estimated from the historical AADTT data
compiled in the Caltrans annual reports, and the number of lanes in
the design direction can be found in the design documents. Therefore,
these two inputs are not discussed here.
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TABLE 2 WIM Site Grouping Based on All Axle Load Spectra

Level 1 Groups Level 2 Groups Level 3 Groups WIM Sites

1

2

3

011, 020, 040, 097, 057/058, 077/078, 079/080, 006, 022, 023, 026, 035, 036, 044, 045, 046, 065,
067, 068, 074, 081, 094, 003/004, 008/009, 012/013, 015/016, 017/018, 037/038, 041/042,
047/048, 051/052, 055/056, 059/060, 061/062, 082/083, 084/085, 095/096, 102, 103/104,
106, 848, 854, 856

014, 024, 031/032, 033/034, 039, 049, 063, 064, 076, 087/088, 089/090, 091/092, 093, 098,
099, 100/101, 107, 111/112

001, 007, 027, 029, 050, 073, 105
010, 043, 072, 075,113, 804, 828
108, 812, 846
005, 021, 066, 069/070, 110, 814

002, 028, 030
025, 071

1

2a

2b

3

1a

1b

2aa
2ab
2ba
2bb

3a
3b
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Obtain the Annual Average Daily Truck Traffic on 
California State Highways Report from 

http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/ 

AADT > 70000 
or 

(4-8)/(9-15) Ratio >1 
or 

Truck Percentage < 10% 
  

Calculate (4-8)/(9-15) Ratio (=number of trucks with 
2,3,4 axles divided by number of trucks with 5 or more 

axles) and Truck Percentage (=AADTT/AADT*100) 
based on truck data in the year of 2000 

Group 3 

No 

Yes

Truck Percentage > 
25% 

On I-5, US-97 in District 2 or I-40, 
HWY-58 in District 8? 

Yes 

Yes 

On Highway 86 in 
District 8? 

Yes 

No 

On I-5 in District 3 (Sacramento County), 6, or 10; or on
US-99 in District 3, 6, or 10; or on I-505, or on I-80 in

the Placer County (District 3), or on HWY-46 in District
5, or on I-580 in District 10?

Group 2a Group 2b 

No 

Yes 

Group 2 

No 

Gr oup  1 or   2 No 

In the coastal regions or in urban areas? Specifically, in Districts 1, 
4, 5, 7, 11, or 12 , or on highways in the Sacramento County of 
District 3, or on highways in the San Joaquin County, Stanislaus 

County, or Merced County in District 10? 

No 

Group 1 
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Truck Percentage < 10% and 
(4-8)/(9-15) Ratio > 1.2? 

Group 1b 

No 

Group 1a 

Ye s 

On I-5, US-97, 
or I-505? 

Group  
2aa 

Group  
2ab 

Ye s 

No 

Group  
2ba 

Group  
2bb 

Yes 

No 

Group  
3a 

Group  
3b 

Yes 

No 
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County), I-40, Highways 58, 74 (postmile>40 in Riverside County), 
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On I-5, US-97, 
or I-505? 

On I-5, US-97, 
or I-505? 

FIGURE 4 Flowchart for grouping highways based on axle load spectra.



Direction and Lane Distribution

Analysis of the WIM data revealed that truck volume is quite similar
in the two opposite travel directions at all WIM sites, and AADTT
is almost identical in the two travel directions for most WIM sites.
The directional distribution factor, which is defined as the ratio 
of truck volume in the most heavily traveled direction to the truck
volume in both directions, ranges between 0.50 and 0.56. The
average directional distribution factors for each subgroup are very
close to each other. A default value of 0.520 is recommended for
the statewide average.

Knowledge of traffic distribution by lane is important in determin-
ing the expected volume of traffic traveling in the design (heaviest
volume) lane. The heaviest lane distribution factor (HLDF), which
is defined as the ratio of the truck volume in the heaviest lane to the
truck volume in all lanes in one travel direction, varies between 0.53
and 0.97, with a mean value of 0.89, for highways with two lanes in
one direction; between 0.51 and 0.87, with a mean value of 0.67, for
highways with three lanes in one direction; and between 0.47 and
0.84, with a mean value of 0.59, for highways with four lanes in
one direction.

The HLDFs in each subgroup are presented in Figure 5, which
shows that the HLDF on highways with two, three, or four lanes in
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one direction has a wider range of variation for highways in Group 1
than for highways in Groups 2 and 3. For highways in Group 1,
there is no significant difference in HLDF in the two subgroups
(Groups 1a and 1b).

Truck Operating Speed

The speed of each truck class has a narrow distribution band, mainly
between 80 and 112 km/h (48 and 67 mph), except for Class 4 and
Class 5, in which the speed falls between 80 and 120 km/h (48 and
72 mph). All distributions are bimodal, indicating that the truck traffic
streams consist of both aggressive and conservative drivers.

The means and variances of the speed distributions were cal-
culated for each WIM site. The spatial distribution of the time-
averaged speed, calculated by kernel density estimation, revealed
that the spatial distributions of time-averaged truck speeds are in
the same bands as the temporal speed distributions, and Class 5
and Class 6 trucks tend to move faster than other trucks. However,
the bimodal phenomenon is not observed, indicating that there are
no specific areas where trucks generally move slower or faster.
Therefore, statewide averages of truck operating speeds can be
used as default inputs.
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FIGURE 5 Lane distribution factors for lanes with heaviest truck traffic volume versus number of lanes in each group.



Hourly and Monthly Truck Distribution

Figure 6 shows the hourly distribution factors for truck volume in
each Level 2 group as defined in Table 2. The hourly distribution
factor is defined as the percentage of truck volume in a specific hour
in the 1-day truck volume.

In Group 1, the hourly distribution factor curve is almost symmetric
around 12 p.m. The maximum hourly traffic occurs at 12 p.m. and
is significantly higher than the minimum hourly traffic, which occurs
at 2 a.m. Most WIM sites in this group are in urban areas, where
short-distance transportation activities account for a large part of
the traffic.

In Groups 2b and 3, the hourly distribution factor curve reaches
its peak at around 5 p.m. and its minimum at around 5 a.m. As 
discussed in the previous section, most WIM sites in these groups
are in rural areas or along major long arterials across the state 
and connect with other states. These routes are dominated by
long-haul traffic, which is not heavily affected by the periodic-
ity of urban activities. In Group 2a, the average hourly distribu-
tion factor curve is flatter than that of Group 1 but sharper than
the curves of Groups 2b and 3. The average hourly distribution
factor in each group can be used as the default inputs for ME
pavement design.
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The seasonal variation of truck traffic is characterized by a monthly
distribution factor, which is defined as the ratio of monthly truck vol-
ume and average monthly truck volume. Figure 7 shows the monthly
distribution factors in each group.

There is an obvious seasonal variation pattern in truck volume.
For most WIM sites, the truck volume reaches the highest level in
August and the lowest level in January. The average monthly distri-
bution factor is about 1.1 in August and 0.9 in January. The exceptions
to this pattern are at WIM sites 023 and 040, where the monthly dis-
tribution factors have a pattern opposite the pattern elsewhere: the
factors are significantly higher (1.3) in February and significantly
lower (0.7) in August. These two sites are on major highways con-
necting California and Mexico. Except for these two sites, there is
no significant difference in monthly distribution factors among the
three groups.

Vehicle Class Distribution

All the truck records in the data set were combined to gain an over-
all picture of the truck traffic composition in California. Figure 8
shows the percentages of each truck class at each WIM site in dif-
ferent groups. Truck Classes 5 (two axles, six tires, single unit), 
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FIGURE 6 Hourly distribution factors in each group.



6 (three axles, single unit), 8 (four or fewer axles, single trailer), 
9 (five axles, single trailer), and 11 (five or fewer axles, multitrailer)
account for an average of 90% of all truck traffic at most sites.

In Figure 8, most WIM sites in Group 1a are in coastal urban areas,
where both local hauls and long hauls (for port freight transportation)
are frequent. Most WIM sites in Group 1b are on highways in urban
areas without direct connections to ports, where local hauls are
predominant. WIM sites in Group 2 are mainly distributed in inland
areas. Most WIM sites in Group 3 are on I-5, Highway 58, I-40, and
I-15. Long hauls are predominant on these roads. The grouping based
on axle load spectra is consistent with the grouping based on truck-
class composition. The average vehicle distribution factors can be
used as default inputs for each group.

Traffic Growth Factor

The truck traffic growth factor can be estimated from the historical
AADTT data compiled in Caltrans annual AADTT reports. Analy-
sis of the truck traffic growth trend based on the WIM data found
that the annual growth of AADTT estimated from a simple linear
regression model differs from site to site, mostly in a range of 20 to
400 trucks per year, with growth at a few sites being negative or 0.
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Forecasting of growth factors based on regression analysis did not
yield good results, so without further information, statewide averages
are recommended as the default inputs for the MEPDG and CalME
software (8).

SUMMARY

This paper presents the results of analysis of the axle load spec-
tra and volume of truck traffic in California based on WIM data
collected on California highways and develops a procedure to
estimate truck traffic inputs for the CalME and the MEPDG soft-
ware for highways where site-specific traffic data are unavailable
or incomplete. Both cluster analysis and regression analysis were
applied, but regression analysis was not adopted because of its
poor results. On the basis of cluster analysis of the axle load spectra,
the WIM sites were divided into eight groups, and default truck
traffic inputs were developed for each group. A decision tree was
developed to determine in which group a highway section is cate-
gorized. The inputs for the decision tree are the geographic loca-
tion of the highway section (district, county, highway number, and
postmile) and the traffic volume and composition, obtainable from
the Caltrans annual report of AADTT.
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FIGURE 7 Monthly distribution factors in each group.



Default traffic inputs for each group were developed for both
CalME and MEPDG. These inputs, along with the traffic inputs for
each WIM site, are stored in a Microsoft Access database, from which
information can be easily retrieved.
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FIGURE 8 Vehicle class distribution in each group.


